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Abstract—For semilinear elliptic equations , boundary value problems in
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1. INTRODUCTION
We consider the equation

(1.1)

Here , , , , and  is one of the domains , , , where  is a
bounded star-shaped domain in  with a -smooth boundary  and . We investigate the weak
solutions  satisfying the following boundary conditions:

in the case ,

(1.2)

in the case ,

(1.3)

and in the case ,

(1.4)
The boundary value problems (1.1), (1.2), (1.1)–(1.3), and (1.1)–(1.4) have a variational structure with
the Euler—Lagrange functional

(1.5)

Following [3], we say that Eq. (1.1) corresponds to the zero mass case. Such an equation is the limiting
case of the family of equations with nonzero masses, i.e., Eqs. (1.1) in which  is replaced by 
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with . In the case , Eq. (1.1) subject to one of the boundary conditions (1.2), (1.3), (1.4) pro-
vides an example of the classical boundary value problem that has a critical exponent. The study of non-
linear problems with critical exponents was started in the 1960s by Pohozaev and Fujita (see [2, 3]). In [2],

the parabolic problem  in  was considered, where the exponent 

is critical in the sense that, for , the parabolic problem has no nonnegative global solutions, while
such solutions can exists when . In [3], it was shown for the elliptic problem (1.1)–(1.3) for  and

 that the existence of positive solutions is possible only for , where  is the Sobolev critical

exponent (  for  and  for ). Presently, the theory of critical exponents is a
central topic in nonlinear analysis. The interest in this topic is caused both by the internal logic of the
development of the theory of nonlinear differential equations and by the demands of applications (e.g.,
see [4–10] and references therein).

In general, the critical exponent can be defined as a value  that separates the intervals of the expo-
nents  for which the equation has distinctive qualitative properties. The problem becomes more compli-
cated if we consider Eq. (1.1) as a family of equations parameterized by two exponents . In this
case, we face a more general problem on the existence of a curve of critical exponents, i.e., a curve that sep-
arates the  domains on the plane in which Eq. (1.1) has qualitatively distinct properties. This problem
was studied in [11], where a new curve of critical exponents  was found in

 that separates in  the domains in which the initial–boundary value
parabolic problem associated with (1.1), (1.2) can have only stable or unstable ground states, depending
on which domain contains the exponents . In this paper, we elaborate theses studies (see [11]) as
applied to the entire quadrant .

As in [11], our approach essentially uses the function  for , which is called the
fibering function following the works by Pohozaev [12, 13]. Note that, in the case of equations with only
one exponent, e.g., in the case  or  in Eq. (1.1), the fibering function , for all  has
a unique stationary point  ( ) of the same type for all  (i.e., either

 or ). If Eq. (1.1) is considered depending on two exponents , then
 can have two nonzero stationary points of different types or have no such points. Under the

approach proposed in this paper, we overcome this difficulty as follows. To investigate the solvability of
problems, in addition to the fibering equation  and Pohozaev’s identity as is done in the
conventional approach [3], we include in the analysis the equation . An additional
advantage of this approach is that it not only helps find necessary conditions for the existence of solutions
but also makes it possible to determine the type of the stationary point of the fibering function  they
can correspond to , , or . The ability to classify these
properties of solutions allow us to investigate the stability of these solutions for the corresponding nonsta-
tionary problems (see Lemmas 4.1, 5.2, 5.5, and 5.8).

The central role in the present paper is played by the mapping

(1.6)

The set  is called the curve of critical exponents. This curve and the
curves , , , , and  divide the plane of the exponents into domains as shown
in Figs. 1–3. The main aim of this paper is to investigate the properties of problems (1.1), (1.2), (1.3), (1.4)
depending on the domain containing the exponents . In Section 2, we derive necessary conditions
for the existence of solutions to problems (1.1), (1.2), (1.3), (1.4) and give a classification of solutions
depending on the type of the stationary points of the fibering function corresponding to them (see Theo-
rems 2.2, 2.4, and 2.5). As a consequence of these results, we give an answer (in the case of equations with
a zero mass) to the Strauss problem (see [14]) of the solvability of problem (1.1)–(1.3) for  and

. In Section 3, we investigate the existence of solutions. The main result is Theorem 3.6. In Section 4, we
use qualitative results on the types of stationary points of the fibering function to obtain results on the lin-
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ear instability of stationary solutions to parabolic equations. In Section 5, we investigate the stability of
solutions to parabolic equations. Here, we elaborate the results obtained in [11] for the case of exponents
in the quadrant . Note that, by Derrick’s theorem [15, 16], in the case , the solutions to
problem (1.1)–(1.3) are linearly unstable stationary states for the corresponding parabolic equations.
However, this result is valid only for , , while the case  is not covered by Derrick’s
theorem. We show that, in the case , a result that is generally opposite to the assertion of Der-
rick’s theorem holds. In Lemma 5.8, we use the curve of critical exponents  to find a subset

 possessing the following properties in the case : the parabolic problem associated
with (1.1)–(1.3), has global solutions and stable (in the sense specified) below stationary states.

% = ND R

> 2p > 2q , ∈ ,(1 2]p q
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Fig. 1. The curve of critical exponents for N ≥ 3.
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Fig. 2. The curve of critical exponents for N = 2.
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2. THE CURVE OF CRITICAL EXPONENTS

It is sufficient to examine Eq. (1.1) depending only on one of the parameters  or . Indeed,

making the change of variables  in Eq. (1.1), e.g., with , we obtain Eq. (1.1) with 

and . Furthermore, in the case , problem (1.1)–(1.3) is actually independent
of both parameters . Indeed, if  satisfies (1.1)–(1.3) at a certain , then we can make the

change of variables  with  and  to obtain a solution to Eq. (1.1) with
. For this reason, we assume that  below. In addition, while considering Eq. (1.1) in the case

, we assume (unless otherwise indicated) that  and omit the coefficient .

Let , , or , where  is a bounded domain in  with a -smooth bound-

ary . We define , where  is the Hilbert space defined as the comple-

tion of  with respect to the norm . In this notation, the boundary value prob-

lems (1.1), (1.2), (1.3), and (1.4) are written in the unified form

(2.1)

where the equality is interpreted in the weak sense. Let

Then, . A weak solution  to problem (2.1) is called the ground state

[1] if  for any other weak solution  to this problem. Consider the fibering func-
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Fig. 3. The curve of critical exponents for N = 1.
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Introduce the notation , . Note that, if  is a solution to

problem (2.1), then ; i.e.,  is a stationary point of the function . It is easily seen that,
for each , the following conditions are fulfilled.

Condition 1. If  or , then   has a unique stationary point

; furthermore,  if , and  if .
Condition 2. If  or , then there exists a  such that, , 

has no stationary points ; for , there exists a unique nonzero stationary point , and

; for , there exist two nonzero stationary points  such that

 and .
Let  be a weak solution to Eq. (2.1). Then, according to the standard regularity theory of

solutions to elliptic equations (see [17]), we have  for . Hence,  satisfies
Pohozaev’s identity (see [3, 18])

(2.2)

where  is the normal vector to the boundary at the point ,  if ,  if  
or , and

(2.3)

is Pohozaev’s function. Here,  if ,  if , and  if . In addition we
will use the following notation:

and

Proposition 2.1. Let  be a weak solution to Eq. (2.1),  be a bounded domain in  that is a

star-shaped domain with respect to the origin of , and let  be a -smooth boundary. Then,

(i)  if ;
(ii)  if ;

(iii)  if .
Proof. Assertion (i) is an immediate consequence of formula (2.2). Note that, if  is a star-shaped

domain with respect to the origin of , then  for all . Hence, (2.2) implies (ii) and (iii).

Let . Consider the system of equations

(2.4)

where  are considered as unknowns. The determinant of this system is
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where  is given by formula (1.6). In the case  and , the solution to system (2.4) has the form

(2.6)

In the case , we have the following result.

Theorem 2.2. Let , , . Then, the following is true.
(1) For the existence of a nonzero solution to problem (2.1), it is necessary that  or

 if , and  if .
(2) If  is a weak solution to problem (2.1), then  and ,

, and .
Proof. Suppose that there exists a weak nonzero solution  to problem (2.1). Then,  and, by

Proposition 2.1, . Therefore, (2.6) implies

(2.7)

Since , these equalities are possible only if the factors , , and 
multiplying  have identical signs. Hence, in the case , it must be , ,  or

, , ; in the case , it must be q < p. Therefore, assertion (1) of Theorem 2.2 is
valid.

Note that, if  and , then , , and . This and (2.7)
imply that the sign of  coincides with the sign of . It is easy to see that the same holds for

 and  or for  and . Thus, we have assertion (2) of Theorem 2.2.
In [14], the question about the existence of solution to problem (1.1)–(1.3) in the case  and

 was posed. In the case of a zero mass, assertion (1) of Theorem 2.2 gives the following answer to
this question.

Corollary 2.3. In the case  and , problem (1.1)–(1.3) has no solutions.

In the case of a bounded domain , we have the following result.
Theorem 2.4. Let , , and , where  is a bounded star-shaped domain with

respect to the origin of  with a -smooth boundary . Then, the following is true:
(1) for the existence of a nonzero solution to problem (2.1), it is necessary that, in the case  

or ;
(2) if  is a weak nonzero solution to problem (2.1), then, in the case ,  if

 or , and  if .

Proof. Let  be a weak solution to problem (2.1), and let . Then, since  and 
by Proposition 2.1, (2.6) implies
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(2.10)

Inequality (2.8) implies that, if , then . In this case, inequalities (2.9) and (2.10) are
consistent because  implies  or .

Consider the case . Due to Condition 1, . Hence, (2.8) implies . Then,
the inequality  and (2.10) imply . Thus, for the existence of a solution in this case, it is nec-
essary that . It is easy to verify that, in the case , inequalities (2.8)–(2.10) are
consistent. Summarizing the reasoning above, we conclude that, in the case , in the semi-plane

, the condition  is necessary for the existence of a solution to problem (2.1).
Consider the case . Then, (2.6) and the inequality  imply that

(2.11)

The first inequality in (2.11) implies that  if . Furthermore,  implies  and
. Using this fact, we conclude that these inequalities are consistent for all  and  under con-

sideration. In the case , the reasoning is similar.

In the case , the following result holds.

Theorem 2.5. Let , , and , where  is a bounded star-shaped domain with

respect to the origin of  with a -smooth boundary . Then, the following is true:
(1) for the existence of a nonzero solution to problem (2.1), it is necessary that, in the case , 

or  and, in the case ,  or ;
(2) if  is a weak nonzero solution to problem (2.1), then,

 in the case   if  and  or  and ;
in the case   if  or  and .
Proof. Let  be a weak solution to problem (2.1). Then, in the case , (2.6) with the inequality
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then inequalities (2.13) and (2.14) can hold only for . It is easy to verify that, in the case

 and , inequalities (2.12)–(2.14) are consistent; and, in the case  and ,
they are inconsistent. Therefore, if , then it is necessary that , and if additionally

, then . The analysis of inequalities (2.12)–(2.14) for  shows that they are con-
sistent.

The cases  and  are analyzed analogously to each other. By way of example, consider the
case . Using (2.6) and taking into account , we have
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The analysis of these inequalities in the case  shows that they are consistent. It follows from
(2.15) that  implies . Note that, if , then  and, therefore, the left-hand
sides of inequalities (2.16) and (2.17) are negative, while their right-hand sides are positive. This contra-
diction proves that the inequalities are inconsistent. They are also inconsistent in the case  and

.

3. EXISTENCE OF SOLUTIONS

The existence of a solution to Eq. (2.1) in the case  follows from the results obtained in [1, 14,
19–22]. We summarize these results in the following lemma.

Lemma 3.1. Let . Then, the following is true:

(1) if  and , then there exists a solution  to problem (2.1) such that ,
, , , and  for . In addition, if , then  in ;

(2) if  and  or , then there exists a nonnegative solution

 to problem (2.1) that is a ground state. Furthermore, if  or ,
then  and the function  is spherically symmetric and monotonically decreasing, i.e., , 
for  and  for .

The proof of assertion (1) in the case  follows from Theorem 1.1 in [22] in the case  and
from Theorem 5 in [3] in the case . A proof of this assertion in the case  can be found
in [19–21, 23].

The proof of existence in assertion (2) follows from the following theorem in [1] about the sufficient
conditions for the existence of solutions.

Theorem 3.2 (Berestycki–Lions). Let  and  be a continuous odd function satisfying the

conditions

(1) , where ;

(2)  such that ;

(3) if  for all , then

Then, there exists a nonnegative solution  to the problem

(3.1)

(3.2)

and .

It is easy to verify that the function  is continuous for . In addition, it
satisfies conditions (1)–(3) of Theorem 3.2 if and only if  or . Note that this, in
particular, implies the following result.

Corollary 3.3. Let  be a continuous odd function. Then, conditions (1)–(3) of Theorem 3.2
are necessary and sufficient for the existence of solutions to problem (3.1)–(3.2).

The second part of assertion (2) of Lemma 3.1 follows from the maximum principle for elliptic equa-
tions (e.g., see [1]).

Consider the case . In this case, we will consider only the exponents in the set .
Then, by Sobolev’s theorem, we have the embedding  for . Therefore, we may
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consider  as . We will construct a solution to (2.1) by the Nehari manifold method using a
variational problem with an imposed constraint:

(3.3)

Here  is called the Nehari manifold. Let

(3.4)

Note that, since every weak solution to problem (2.1) belongs to the Nehari manifold , the minimizer
 of problem (3.3) satisfying Eq. (2.1) is a ground state.

Proposition 3.4. Let  and  be a minimizer of problem (3.3), satisfying the condition

(3.5)

Then,  is a weak solution to problem (2.1), i.e., .
Proof. A proof can be found, e.g., in [12, 13].
Let us find the values of  at which  and condition (3.5) is satisfied. To this end, we use the

nonlinear Rayleigh quotient method [24]. Let , , and ; then, the
following Rayleigh quotient is well defined:

Consider

(3.6)

By differentiating this function with respect to , we obtain

(3.7)

It is easy to verify that the equation  has a solution only if  and ;
moreover, this solution is unique and is given by the formula

(3.8)

Substitute  into  to obtain the nonlinearly generalized Rayleigh quotient

(3.9)

, Ω1 2( )$ ( )W D

λ λ→ ∈( ) min, .E u u N

λ λ:= ∈ ='{ ( )\0 : ( ) 0}u W D E u1

λ λ λ:= ∈ .ˆ min{ ( ) : }E E u u N

λ1

λ λ∈u 1

λ > 0 λu

λ λ ≠ .''( ) 0E u

λu λ λ =( ) 0uD E u

λ λ ≠ /01

,∈ Ω1 2( )\0u $ <1 min{ , }p q <max{ , } 2*p q

∇ +

= .
∫ ∫

∫

2| | | |

( )
| |

q

D D

p

D

u dx u dx

R u
u dx

− −

,

∇ +

= , ∈ Ω , > .
∫ ∫

∫

2 2

1 2

| | | |

( ) ( )\0 0
| |

p q p q

D D

p

D

r u dx r u dx

R ru u D r
u dx

r

− − −− ∇ + −
∂ = .
∂

∫ ∫

∫

1 2 1(2 ) | | ( ) | |

( )
| |

p q p q

D D

p

D

p r u dx q p r u dx

R ru
r u dx

∂ =∂ ( ) 0R ru
r

< < <1 2q p < <2 p q

−
⎛ ⎞− ∇
⎜ ⎟
⎜ ⎟= .

−⎜ ⎟
⎜ ⎟
⎝ ⎠

∫

∫

1 22

min

( 2) | |

( )
( ) | |

q

D

q

D

p u dx

r u
q p u dx

min( )r u ( )R ru

− −
− −

,

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∇
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠λ := = ,
∫ ∫

∫

2
2 2

2

min

| | | |

( ) ( ( ) )
| |

q p p

q q

q

D D
p q p

D

u dx u dx

u R r u u c
u dx



www.manaraa.com

506

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 3  2017

IL’YASOV

where

Hence, we obtain the following critical value (see [24, 25]):

(3.10)

Using the same reasoning for the Rayleigh quotient

we obtain

(3.11)

where . Consider . It is clear that , and
the following result holds.

Lemma 3.5. Let  or , and , where  is a bounded domain in  with

a -smooth boundary . Then,  and . Moreover,  if and only if

 and, if , then there exists a  such that .
Proof. The inequality  is easily derived from the Hölder and Sobolev inequalities. The

inequality  follows from the fact that . To prove the remaining part of the lemma, it

suffices to note that   and, if  for a certain ,
then .

Now we prove the following main result.

Theorem 3.6. Let  and , where  is a bounded domain in  with a -smooth boundary .
Then, the following holds:

(1) If  or  and , then, for all , there exists a solution

 to problem (2.1) such that  is a ground state,  for a certain , and

 in .
(2) If  or , then problem (2.1) has no solutions for .

If , then there exists a solution  to problem (2.1) such that  is a ground state,

 for a certain ,  in , and ,  .
In addition, if , then  in .

Proof. Note that, since  and  , the existence of a minimizer  in prob-
lem (3.3) implies that  is a minimizer as well. Condition (3.5) is evidently retained in this case. Thus,
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existence of a weak nonnegative solution to (2.1). Furthermore, if  is a weak solution to problem (3.3),
then the regularity theory of solutions to elliptic equations (see [17]) implies that  for
a certain . In addition, for , , or , the max-
imum principle for elliptic boundary value problems implies (see [26, 27]) that  in . Therefore, to
prove assertions (1) and (2) of Theorem 3.2, it suffices to find (for the corresponding ) a minimizing
sequence in problem (3.3) satisfying condition (3.5).

Proof of assertion (1) of Theorem 3.6. Note that, if , then   and, if

 and , then  . Therefore, condition (3.5) is always fulfilled in
these cases, and it is sufficient for the proof of assertion (1) to prove the existence of a minimizer in prob-
lem (3.3).

Let  ( ) be a minimizing sequence in problem (3.3), i.e., let  as .
First, consider the case . Using the Hölder and Sobolev inequalities, we obtain

where  is independent of . This implies that  is a coercive functional on 
and, therefore, there exists a subsequence, which we again denote by , such that 
weakly in  and, by the Sobolev theorem,  strongly in  for . Since ,
this implies that  and, therefore,

, (3.12)

(3.13)

Since  for , we have  and, therefore, . It is easy to verify that, if one of
the inequalities (3.12) or (3.13) holds with equality, then  is a minimizer in problem (3.3). Suppose that

. Then, there exists an  such that  and , which is a contradiction.

Thus, we conclude that  and , i.e.,  is a minimizer in problem (3.3).
Consider the case  and . In this case,  is a coercive functional on .

Indeed, if , then  +  as . Hence, as before, we con-

clude that there exists a limiting function  satisfying inequalities (3.12) and (3.13). Let us show
that . Assume the converse. Then,  and

where  for  . This a contradiction. Let us show that (3.12) and (3.13) hold with

equality. Assume the converse. Then , and there exists an  such that .
Since  and  is a maximizer of the function  ( ), then

This and  entail a contradiction, which proves assertion (1).
Assertion (2) in the case  was proved in [11] (also see [19, 20, 23]). Here we prove this

assertion in the case . The nonexistence of solutions to problem (2.1) in the case
 follows from Lemma 3.5. Indeed, any solution belongs to the Nehari manifold, and by

Lemma 3.5 we have  if .

Lemma 3.7. Let  and . Then, there exists a minimizer  in problem (3.3).
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Proof. Let . Then  is not empty by Lemma 3.5. Let  ( ) be a minimizing

sequence in problem (3.3), i.e.,  as . We show that  is bounded in . Using
the Hölder inequality, we obtain

where  is independent of . This and the inequality  imply that  is bounded

which, in turn, due to  implies the boundedness of , which was to be proved. In addition,
we proved that . Consider the sequence ,  ( ). Since  is
bounded, we may assume without loss of generality that  as  for a certain . Note that
for , it holds that

(3.14)

Taking into account that , we obtain that . Since  for  we have that,
by the Eberlein–Šmulian theorem and the Sobolev embedding theorem, there exists a subsequence,
which we again denote by , such that  weakly in  and strongly  in  and

 for a certain . Hence we can use (3.14) to prove by contradiction that . Then,

due to the weak lower semicontinuity of the functional  on , we obtain

(3.15)

(3.16)

where . Assume that there is a strict inequality in (3.16). Then, since , there exists a

 such that , , and . This is a contradiction. Therefore,
(3.16) holds with equality. Then, , which implies the equality in (3.15), which was to be proved.

Now we are ready to complete the proof of assertion (2). Let . Then, since ,
Lemma 3.7 implies the existence of a solution  to the Nehari problem (3.3). Since , by

Lemma 3.5 there exists a  such that . This implies that  and, therefore,

 and . Hence,  satisfies condition (3.5) and, therefore, Eq. (2.1). This completes
the proof of the theorem.

4. LINEAR INSTABILITY

In this section, we discuss some results on the linear instability of stationary solutions to the equation

(4.1)

Here, as above, , , or . We consider the solutions subject to boundary con-
ditions (1.2)–(1.4) and the initial condition

(4.2)

The solution to problem (4.1), (4.2) will be denoted by . It is known (e.g., see [28, 29]) that, if
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lem (4.1), (4.2) for a certain . Moreover, if , then ,
and, if additionally , then

(4.3)

In the case , the solution  is said to be global.
Let  be a weak bounded in  solution to problem (2.1). Consider the linearized problem

(4.4)

Then, in the case , it is easy to verify that there exists the minimal eigenvalue  in
problem (4.4) with the nonnegative eigenfunction  (e.g., see [26, 30]).

The solution  to problem (1.1) is called a linearly unstable stationary solution to problem (4.1) if the
minimal eigenvalue  of the operator  is negative. Note that, if we consider the perturbed solution

 to problem (4.1), then upon the linearization we obtain . Hence, for
, we see that the perturbation is exponentially unstable in the linear approximation.

Lemma 4.1. Let , , , and  be a bounded star-shaped (with respect to the origin

of ) domain with a -smooth boundary . Then, the weak bounded in  solution  to problem (2.1) is
a linearly unstable stationary solution to problem (4.1) if the following conditions are satisfied:

(i)  and ;
(ii)  and ;

(iii)  for  or  and .
Proof. Note that, under conditions (i)–(iii), the weak solution  to problem (2.1) by Theorems 2.2, 2.4,

and 2.5 satisfies the inequality . By the minimax Courant–Fischer principle, we have

(4.5)

Set . Then, we have

(4.6)

Hence, due to the inequality , (4.5) implies , which proves the lemma.
Note that the approach based on the use of the fibering function  allows us to obtain the following

result on the upper bound on the minimal eigenvalue of the linearized problem (4.4).

Corollary 4.2. Let , , , , , or , where  is a bounded

domain with a -smooth boundary . Let  be a weak bounded in  solution to problem (2.1). Then, the

minimal eigenvalue  of the linearized problem (4.4) satisfies the inequality

Proof. The proof immediately follows from the minimax Courant–Fischer principle (4.5) and for-
mula (4.6).
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5. ON THE STABILITY OF GROUND STATES
Note that Derrick’s theorem (see [15]) contains a stronger assertion then in Lemma 4.1 under condi-

tion (i); namely, for ,  and , if there exists a weak bounded in  solution  to
problem (2.1), then it is a linearly unstable stationary solution to problem (4.1). It was shown in [16] that
the same result holds in the case  if . However, the situation can be different if

. In particular, this can be due to the fact that problem (2.1) in this case can have solutions with
compact support (see [6, 19, 20, 31]). Below, we show that such solutions are, in a certain sense, stable in
the case . The situation becomes different in the case of a bounded domain . In this case,
problem (2.1) has stable solutions. In the case , such a result was obtained in [11]. In this sec-
tion, we extend this result to other exponents.

In what follows, the solution  to problem (2.1) is called a -stable stationary solution to the par-
abolic problem (4.1), (4.2) if ,  such that

(5.1)

At a fixed , the set of all ground states of problem (2.1) will be denoted by , and it will
be called the manifold of ground states.

Proposition 5.1. Let , , and  be a bounded domain in  with a -smooth

boundary . Then,  is a bounded set in .
Proof. This proposition is proved by contradiction and the proof is similar to the proof of Lemma 3.7.

Let . Introduce the notation  The manifold

of ground states  will be called -stable for the parabolic problem (4.1), (4.2) if, , there
exists a  such that

(5.2)

Lemma 5.2. Let ,  or , and , where  is a bounded domain in

 with a -smooth boundary . Then, if , then the manifold of ground states  of problem (2.1)

is -stable.

Proof. Consider the manifold of ground states  of problem (2.1). Note that by Theorem 3.6, if

, then  for every . Since  is a bounded set in  and the mappings

 are continuous, there exists a  such that, for all  and , it

holds that .
Let us show that  is a Lyapunov functional in the neighborhood  for .
Proposition 5.3. There exists a  such that

(5.3)

Proof. Assume the converse, i.e., let, for each , there exists a  such that
. Then, there exists a sequence  such that

and

(5.4)

The first convergence implies that there exists a sequence  such that

(5.5)
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Note that  is a minimizing sequence for (3.3) because  for all . Therefore,
we can use the same reasoning that was used for the minimizing sequence in the proof of Lemma 3.7.
Therefore,  has a limiting point , which is a ground state of problem (2.1). Furthermore,

 strongly in  as . This and (5.5) imply that  strongly in  as .
Note that by construction  is not a ground state of (2.1). Therefore,

This inequality and (5.4) imply

(5.6)

Since the mappings  are continuous and  in  as , we
have

Here  because . Then, (5.6) implies that

This and the inequalities  and  entail

However, this contradicts the inequality  for all .
To complete the proof of Lemma 5.2, it suffices to prove the following proposition.
Proposition 5.4. For each , there exists a  such that

(5.7)

Proof. Let . Consider

(5.8)

Then . Indeed, assume the converse, i.e., let there exist a sequence  such that
 and . Since the set  is bounded in ,  is also bounded in

. Then, by the Eberlein–Šmulian theorem and Sobolev’s embedding theorem, there exists a
 and a subsequence (which is again denoted by ) such that  weakly in 

and strongly in . The weak lower semicontinuity of the functional  on 
implies  and . By Proposition 5.3, this is possible only if .

Then, the equality  implies the strong convergence  in . Hence,
. Then, , which is a contradiction.

Since , we have  for a certain . The continuity of the mapping
 implies that there exists a  such that

(5.9)

To prove the proposition, it remains to verify that, for every , the solution  remains
in  for all . Assume the converse. Then, taking into account that ,
there exists a  such that . Due to (5.8), this implies
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On the other hand, (4.3) implies that . Therefore, taking into account (5.9), we
have

Thus, we have a contradiction, which proves Proposition 5.4.
Let . If a nonnegative solution  to problem (2.1) satisfies the condition

(5.10)

then  is called the solution with a compact support. Note that, according to the standard regularity theory
of solutions to elliptic problems, if  is a weak solution to (2.1), then  for

.
In [32, 33], the following lemma was proved.
Lemma 5.5. Let , , , and  be a bounded star-shaped domain with

respect to the origin of  with a -smooth boundary . Then, there exists a  such that,

for all , problem (2.1) has a solution  with a compact support. Moreover, for , the solution

 with a compact support is a ground state of problem (2.1). In this case,  for 

and  in .

Note that  for .
Below, we will need the following lemma (see [34]).

Lemma 5.6 (Serrin–Zou). Let , , and . Then, any solution  to problem (2.1)
has a compact support. Moreover, for each connected component  in the open support

, it holds that

(1)  is a ball;

(2)  is a radially symmetric function with respect to the center of the ball .

Let  and . Consider problem (2.1) for  and . Then, by Lemma 3.1,
there exists a classical nonnegative solution  of this problem that is a ground state of (2.1). Since  is a
ground state, it is easy to conclude from Lemma 5.6 that the support supp( ) consists of a single compo-
nent, which is a ball centered (without loss of generality) at zero with a certain radius ; i.e.,

supp( . The function  is radially symmetric. Note that  is a classical solution to problem (2.1) in

the case . As was shown in [20, 21], this implies that  is a unique positive solution to this prob-
lem, and the radius  is determined uniquely. On the other hand, by Lemma 5.5, if additionally

, then there exists a  such that (2.1) has a ground state  with a compact support.

Using the uniqueness of  and the fact that  is a ground state of problem (2.1) for , it is easy to

verify that  and . This, in particular, implies the following result.

Corollary 5.7. Let , , , and . Then, the manifold of ground

states  of problem (2.1) with  consists of a single solution , and  has a compact support.

Every function  in  can be extended to  by the formula

(5.11)

Then, , and in this sense .
Lemma 5.2 and Corollary 5.7 imply the following result.
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Lemma 5.8. Let , , , and . Then, the compactly supported solution

 to problem (1.1)–(1.3) is a stable stationary state of the parabolic problem (4.1)–(4.2) in the following sense:

,  such that

(5.12)

It is clear from the translational invariance of Eqs. (1.1), (4.1) that  also is a stable stationary
state of the parabolic problem (4.1), (4.2) for every  in the sense similar to Lemma 5.8. In partic-
ular, consider

where  and  for . Then, we obtain the following
result.

Corollary 5.9. Let , , , and . Then, there exists a  such
that, for all , the solution  to problem (4.1), (4.2) is global and bounded for all .

6. CONCLUDING REMARKS
It is easy to see that Theorem 3.6 on the existence of solutions in the case of a bounded domain 

can be extended to Eqs. (1.1) with a nonzero mass, at least, for small . Taking into account The-
orem 2.4, the existence of solutions to Eq. (1.1) in the case  when , , or

 remains an open question.

I am not aware of the results on the existence of solutions to Eq. (1.1) in the case  in the
same generality as in the case of the two other domains if two exponents  are taken into account.
Some results in this direction can be found in [35–37] (also see the references therein).

I believe that the results obtained in Sections 4 and 5 can be extended to other types of nonstationary
equations—hyperbolic, nonlinear Schrödinger equations, etc.

Note that Derrick in [15] concluded from the result on the instability of localized solutions that this is
an obstacle for interpreting such solutions as particles. In [15], he proposed a few modifications of models
aimed at obtaining stable localized solutions. Lemma 5.8 and Corollary 5.9 suggest that equations with
non-Lipschitz nonlinearities can be considered as a way to obtain models with stable localized solutions.
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